Remote Sensing in Predicting Development Patterns of Built-up Land

  • Iqbal Eko Noviandi Geography Information Science Study Program, Faculty of Social Science Education, Universitas Pendidikan Indonesia
  • Alvien Hanif Ramadhan Geography Information Science Study Program, Faculty of Social Science Education, Universitas Pendidikan Indonesia
  • Rahma Nur Hasanah Geography Information Science Study Program, Faculty of Social Science Education, Universitas Pendidikan Indonesia
  • Nandi Department of Geography Education, Faculty of Social Science Education, Universitas Pendidikan Indonesia
Keywords: Remote sensing, Build-up Index, Urban Prediction, Geographic information system

Abstract

Indonesia is a developing country whose construction and development are centered on the island of Java, especially in West Java Province. Sukabumi City is one of the areas in West Java. The development of urban areas is expanding due to various human needs to carry out the construction of buildings. Remote sensing that can be used to store developments with multi-temporal analysis with materials is Landsat imagery from 2001 to 2020. The method used is the Normalized Difference Built-up Index (NDBI). The purpose of this study is to map the development of the built-up land from year to year and predict the following years. The results of the research on the significant changes in built-up land occurred between 2013-2020, while from 2001 to 2013 there was not much change. Based on the research results, the total growth of built-up land was 1.539% per year with a population growth rate of 1.4% per year. The results of the analysis show that the area of ​​land built in Sukabumi City in 2028 is 186,7194 km2 or has increased by 21,2808 km2 since 2020.

References

Ali, M. I., Hasim, A. H., & Abidin, M. R. (2019). Monitoring the Built-up Area Transformation Using Urban Index and Normalized Difference Built-up Index Analysis. International Journal of Engineering, 32(5), 647-653. doi:10.5829/ije.2019.32.05b.04

Ali, M. I., Hasim, A. H., & Abidin, M. R. (2019). Monitoring the Built-up Area Transformation Using Urban Index and Normalized Difference Built-up Index Analysis. International Journal of Engineering, 32(5). doi:10.5829/ije.2019.32.05b.04

Cahyadi, A., Wacano, D., Yananto, A., & Wijaya, M. S. (2017). Keterbatasan dan Kendala-Kendala dalam Prediksi Penggunaan Lahan Masa Depan Menggunakan Metode Cellular Automata (Studi Kasus Pemodelan Prediksi Penggunaan Lahan DAS Darang Tahun 2015). 19-28. doi:10.31227/osf.io/qube7

Chen, Y., Peng, Z., Ye, Y., Jiang, X., Lu, D., & Chen, E. (2021). Exploring a uniform procedure to map Eucalyptus plantations based on fused medium–high spatial resolution satellite images. International Journal of Applied Earth Observation and Geoinformation, 103, 102462. doi:10.1016/j.jag.2021.102462

Firozjaei, M. K., Sedighi, A., Kiavarz, M., Qureshi, S., Haase, D., & Alavipanah, S. K. (2019). Automated Built-Up Extraction Index: A New Technique for Mapping Surface Built-Up Areas Using LANDSAT 8 OLI Imagery. Remote Sensing, 11(17). doi:10.3390/rs11171966

Hanif, M., & Nofrizal, A. Y. (2019). HUBUNGAN PERKEMBANGAN LAHAN TERBANGUN PERKOTAAN DENGAN FENOMENA IKLIM MIKRO URBAN HEAT ISLAND. Jurnal Spasial, 4(3), 97-103. doi:10.22202/js.v4i3.2507

He, Q., Zhang, Z., Ma, G., & Wu, J. (2020). GLACIER IDENTIFICATION FROM LANDSAT8 OLI IMAGERY USING DEEP U-NET. ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, V-3-2020, 381-386. doi:10.5194/isprs-annals-v-3-2020-381-2020

Hendrawan, Marzuki, Muliadi, & Azhari, A. P. (2020). Sebaran Lahan Terbangun Berdasarkan Normalized Difference Built-up Index Citra Landsat 8 di Kota Mataram Distribution of Built Land Based on Normalized Difference Built-up Index Landsat 8 Imagery in Kota Mataram. SainsTech Innovation Journal, 3(1), 35-40.

Hidayati, I. N., Suharyadi, R., & Danoedoro, P. (2018). Kombinasi Indeks Citra untuk Analisis Lahan Terbangun dan Vegetasi Perkotaan. Majalah Geografi Indonesia, 32(1), 24-32. doi:10.22146/mgi.31899

IVAN, K., & BENEDEK, J. (2017). The assessment relationship between land surface temperature (LST) and built-up area in urban agglomeration. Case study: Cluj-Napoca, Romania. Geographia Technica, 12(1), 64-74. doi:10.21163/gt_2017.121.07

Lee, D. K., In, J., & Lee, S. (2015). Standard deviation and standard error of the mean. Korean Journal of Anesthesiology, 68(3), 220. doi:10.4097/kjae.2015.68.3.220

Lv, N., Ma, H., Chen, C., Pei, Q., Zhou, Y., Xiao, F., & Li, J. (2021). Remote Sensing Data Augmentation Through Adversarial Training. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 14, 9318--9333. doi:10.1109/jstars.2021.3110842

Negrón-Juárez, R. I., Holm, J. A., Faybishenko, B., Magnabosco-Marra, D., Fisher, R. A., Shuman, J. K., . . . Chambers, J. Q. (2020). Landsat near-infrared (NIR) band and ELM-FATES sensitivity to forest disturbances and regrowth in the Central Amazon. Biogeosciences, 17(23), 6185-6205. doi:10.5194/bg-17-6185-2020

Nofrizal, A. Y. (2017). NORMALIZED DIFFERENCE BUILT-UPINDEX (NDBI) SEBAGAI PARAMETER IDENTIFIKASI PERKEMBANGAN PERMUKIMAN KUMUH PADA KAWASAN PESISIR DI KELURAHAN KALANG KAWAL, KECAMATAN GUNUNG KIJANG, KABUPATEN BINTAN. Tunas Geografi, 6(2), 143-150. doi:10.24114/tgeo.v6i2.8572

Noraini, A., & Mabrur, A. Y. (2020). Perbandingan Visualisasi Hasil Deteksi Area Terbangun Berdasarkan Metode Maximum Likelihood Classification (MLC) dan Normalized Difference Built-Up Index (NDBI). Buletin Loupe, 16(01), 21-26. doi:10.51967/buletinloupe.v16i01.113

Nurhidayati, E., & Fariz, T. R. (2020). Analisis Regresi Logistik Untuk Identifikasi Faktor Pendorong Pertumbuhan Lahan Terbangun Secara Spasial di Kota Pontianak. UNIPLAN: Journal of Urban and Regional Planning, 1(1), 40-47. doi:10.26418/uniplan.v1i1.43043

Putra, D. R., & Pradoto, W. (2016). POLA DAN FAKTOR PERKEMBANGAN PEMANFAATAN LAHAN DI KECAMATAN MRANGGEN, KABUPATEN DEMAK. Jurnal Pengembangan Kota, 4(1), 67–75. doi:10.14710/jpk.4.1.67-75

Rasskazova, A., & Sinits, Y. (2019). Prediction of agricultural land use. (IOP) Conference Series: Earth and Environmental Science, 350. doi:10.1088/1755-1315/350/1/012068

Ridwana, R., Sugandi, D., Arrasyid, R., Himayah, S., & Pamungkas, T. D. (2021). Multitemporal landsat image utilization for spatial prediction of built up area in tasikmalaya city, indonesia. IOP Conference Series: Earth and Environmental Science. 683, p. 012101. Orlando: IOP Publishing. doi:10.1088/1755-1315/683/1/012101

Solihin, I. P., & Kurniyanto, R. (2021). Pemanfaatan Citra Landsat 8 Untuk Estimasi Luas Lahan Terbangun dan Tidak Terbangun pada Kota Bandung. Jurnal Indonesia Sosial Teknologi, 2(5), 816-827. doi:10.36418/jist.v2i5.150

Suwarsono, & Khomarudin, M. R. (2017). DETECTING THE SPATIAL DISTRIBUTION OF SETTLEMENTS ON VOLCANIC REGION USING IMAGE LANDSAT-8 OLI IMAGERY. International Journal of Remote Sensing and Earth Sciences (IJReSES), 11(1), 63-72. doi:10.30536/j.ijreses.2014.v11.a2602

Syafitri, R. A., & Susetyo, C. (2019). Pemodelan Pertumbuhan Lahan Terbangun Sebagai Upaya Prediksi Perubahan Lahan Pertanian di Kabupaten Karanganyar. Jurnal Teknik ITS, 7(2). doi:10.12962/j23373539.v7i2.36453

Yin, I., Tan, M. L., Lin, T. Y., Mohamad, D., & Ghapar, A. (2019). Monitoring Land Use Pattern And Built-Up Expansion In Kuala Lumpur City Centre. The European Proceedings of Multidisciplinary Sciences (pp. 200-2014). Cognitive-Crcs. doi:10.15405/epms.2019.12.20

Yuliastuti, N., & Fatchurochman, A. (2021). PENGARUH PERKEMBANGAN LAHAN TERBANGUN TERHADAP KUALITAS LINGKUNGAN PERMUKIMAN (Studi Kasus: Kawasan Pendidikan Kelurahan Tembalang). Jurnal Presipitasi : Media Komunikasi dan Pengembangan Teknik Lingkungan, 9(1), 10-16.

Zahrotunisa, S., & Wicaksono, P. (2017). Prediksi Spasial Perkembangan Lahan Terbangun Melalui Pemanfaatan Citra Landsat Multitemporal di Kota Bogor. Jurnal Online Informatika, 2(1), 30-35. doi:10.15575/join.v2i1.88

Published
2021-11-30
How to Cite
Noviandi, I. E., Ramadhan, A. H., Hasanah, R. N., & Nandi. (2021). Remote Sensing in Predicting Development Patterns of Built-up Land. Jurnal Geosains Dan Remote Sensing, 2(2), 56-64. https://doi.org/10.23960/jgrs.2021.v2i2.61