Dinamika Spasial Wilayah Rawan Tsunami di Kecamatan Nusaniwe, Kota Ambon, Provinsi Maluku

  • Philia Christi Latue Departemen Biologi, Fakultas Biologi, Universitas Herzen
  • Heinrich Rakuasa Departemen Geografi, Fakultas Matematika dan Ilmu Pengetahuan Alam, Universitas Indonesia
Keywords: cellular automata-markov chain, dinamika spasial, nusaniwe, tsunami

Abstract

Berdasarkan kondisi geografis Kecamatan Nusaniwe yang merupakan kawasan rawan tsunami, dengan pertumbuhan penduduk yang semakin berkembang, hal ini dapat meningkatkan risiko tsunami sebagai bencana yang sulit diprediksi kedatangannya. Penelitian ini bertujuan untuk menganalisis dinamika spasial wilayah rawan tsunami di Kecamatan Nusaniwe. Penelitian ini menggunakan data tutupan lahan multi temporal, data driving factor perkembangan lahan terbangun, data jarak dari garis pantai, jarak dari sungai, ketinggian lahan dan kemiringan lereng. Metode yang digunakan yaitu cellular automata-markov chain digunakan untuk memodelkan perkembangan lahan terbangun dan metode weighted overlay digunakan untuk mengalisi bahaya tsunami. Hasil pemodelan tutupan lahan tahun 2031 menunjukkan jenis tutupan lahan terbangun terus mengalami peningkatan luas. Tingkat bahaya tsunami di Kecamatan Nusaniwe, didominasi oleh tingkat bahaya sedang dengan luas 2.103,90 ha. Disimpulkan bahwa perkembangan lahan terbangun di kawasan rawan tsunami terus mengalami peningkatan setiap tahunnya. Hasil penelitian ini diharapkan dapat menjadi masukan bagi pemerintah Kota Ambon dalam upaya penataan ruang berbasis mitigasi bencana tsunami ke depannya

References

Akbar, F. S., Vira, B. A., Doni, L. R., Putra, H. E., & Efriyanti, A. (2020). Aplikasi Metode Weighted Overlay untuk Pemetaan Zona Keterpaparan Permukiman Akibat Tsunami (Studi Kasus: Kota Bengkulu dan Kabupaten Bengkulu Tengah). Jurnal Geosains Dan Remote Sensing, 1(1), 43–51. https://doi.org/10.23960/jgrs.2020.v1i1.17

Badan Standarisasi Nasional. (2010). SNI 7645-2010 tentang klasifikasi penutup lahan.

BNPB. (2021). IRBI (Indeks Resiko Bencana Indonesia) Tahun 2021. Direktorat Pengurangan Risiko Bencana, BNPB, 115. https://www.bnpb.go.id//uploads/renas/1/BUKU RENAS PB.pdf

CNN Indonesia. (2022). Enam Gunung Api Ditemukan di Laut Banda. CNN Indonesia.com. https://www.cnnindonesia.com/nasional/20220722093151-20-824707/enam-gunung-api-ditemukan-di-laut-banda

Dewi, P. U., Oktaviana, Wahdini, M., Prasiamratri, N., Alghifarry, M. B., & Utami, N. A. (2020). Aplikasi SIG Untuk Pemetaan Zona Tingkat Bahaya Dan Keterpaparan Pemukiman Terhadap Tsunami Kota Denpasar. Jurnal Geosains Dan Remote Sensing, 1(2), 80–88. https://doi.org/10.23960/jgrs.2020.v1i2.28

Espitia, H., Soriano, J., Machón, I., & López, H. (2021). Compact Fuzzy Systems Based on Boolean Relations. In Applied Sciences (Vol. 11, Issue 4). https://doi.org/10.3390/app11041793

Ghosh, P., Mukhopadhyay, A., Chanda, A., Mondal, P., Akhand, A., Mukherjee, S., Nayak, S. K., Ghosh, S., Mitra, D., Ghosh, T., & Hazra, S. (2017). Application of Cellular automata and Markov-chain model in geospatial environmental modeling- A review. Remote Sensing Applications: Society and Environment, 5, 64–77. https://doi.org/https://doi.org/10.1016/j.rsase.2017.01.005

Rakuasa, H., Febermen Halawa, D. A. S. (2022). Pemodelan Spasial Ketersedian Lahan Dengan Kawasan Rawan Tsunami di Kota Ambon. Geo Image, 11(2), 1–12. https://doi.org/https://doi.org/10.15294/geoimage.v11i2.57809

Jafarpour Ghalehteimouri, K., Shamsoddini, A., Mousavi, M. N., Binti Che Ros, F., & Khedmatzadeh, A. (2022). Predicting spatial and decadal of land use and land cover change using integrated cellular automata Markov chain model based scenarios (2019–2049) Zarriné-Rūd River Basin in Iran. Environmental Challenges, 6, 100399. https://doi.org/https://doi.org/10.1016/j.envc.2021.100399

Karsidi, A. (2004). Spatial analysis of land use/land cover change dynamics using remote sensing and geographic information systems: a case study in the down stream and surroundings of the Ci Tarum watershed [University of Adelaide]. https://hdl.handle.net/2440/22077

Koshimura, S., Moya, L., Mas, E., & Bai, Y. (2020). Tsunami Damage Detection with Remote Sensing: A Review. Geosciences, 10(5), 177. https://doi.org/10.3390/geosciences10050177

Kurniawan, T., Yuliatmoko, R. S., Sunardi, B., Prayogo, A. S., Muzli, M., & Rohadi, S. (2021). Tsunami simulation for disaster mitigation based on earthquake scenarios in the Molucca subduction zone (case study of the Molucca Sea earthquake on July 7, 2019). AIP Conference Proceedings, 040026. https://doi.org/10.1063/5.0037665

Latief. H, Kodijat. A, Ismoyo. D, Bustamam. B, Adyasar. D, N. N. dan R. (2016). Air Turun Naik di Tiga Negeri. United Nations Educational, Scientific, and Cultural Organization, Office Jakarta - Indian Ocean Tsunami Information Centre.

Lisanyoto, L., Supriatna, & Sumadio, W. (2019). Spatial Model of Settlement Expansion and its Suitability to the Landscapes in Singkawang City, West Kalimantan Province. {IOP} Conference Series: Earth and Environmental Science, 338, 12034. https://doi.org/10.1088/1755-1315/338/1/012034

Marko, K., Zulkarnain, F., & Kusratmoko, E. (2016). Coupling of Markov chains and cellular automata spatial models to predict land cover changes (case study: upper Ci Leungsi catchment area). IOP Conference Series: Earth and Environmental Science, 47, 012032. https://doi.org/10.1088/1755-1315/47/1/012032

Mustafa, A., Ebaid, A., Omrani, H., & McPhearson, T. (2021). A multi-objective Markov Chain Monte Carlo cellular automata model: Simulating multi-density urban expansion in NYC. Computers, Environment and Urban Systems, 87, 101602. https://doi.org/https://doi.org/10.1016/j.compenvurbsys.2021.101602

Pranantyo, I. R., & Cummins, P. R. (2020). The 1674 Ambon Tsunami: Extreme Run-Up Caused by an Earthquake-Triggered Landslide. Pure and Applied Geophysics, 177(3), 1639–1657. https://doi.org/10.1007/s00024-019-02390-2

Rakuasa, H., Salakory, M., & Latue, P. C. (2022). Analisis dan Prediksi Perubahan Tutupan Lahan Menggunakan Model Celular Automata-Markov Chain di DAS Wae Ruhu Kota Ambon. Jurnal Tanah Dan Sumberdaya Lahan, 9(2), 285–295. https://doi.org/https://doi.org/10.21776/ub.jtsl.2022.009.2.9

Rakuasa, H., Salakory, M., & Mehdil, M. C. (2022). Prediksi perubahan tutupan lahan di DAS Wae Batu Merah, Kota Ambon menggunakan Cellular Automata Markov Chain. Jurnal Pengelolaan Lingkungan Berkelanjutan (Journal of Environmental Sustainability Management), 6(2), 59–75. https://doi.org/https://doi.org/10.36813/jplb.6.2.59-75

Rakuasa, H., Supriatna, S., Karsidi, A., Rifai, A., Tambunan, M. ., & Poniman K, A. (2022). Spatial Dynamics Model of Earthquake Prone Area in Ambon City. IOP Conference Series: Earth and Environmental Science, 1039(1), 012057. https://doi.org/10.1088/1755-1315/1039/1/012057

Salakory, M., Rakuasa, H. (2022). Modeling of Cellular Automata Markov Chain for predicting the carrying capacity of Ambon City. Jurnal Pengelolaan Sumberdaya Alam Dan Lingkungan (JPSL), 12(2), 372–387. https://doi.org/https://doi.org/10.29244/jpsl.12.2.372-387

Sugandhi, N., Supriatna, S., Kusratmoko, E., & Rakuasa, H. (2022). Prediksi Perubahan Tutupan Lahan di Kecamatan Sirimau, Kota Ambon Menggunakan Celular Automata-Markov Chain. JPG (Jurnal Pendidikan Geografi), 9(2), 104–118. https://doi.org/http://dx.doi.org/10.20527/jpg.v9i2.13880

Supriatna, S., Pratiwi, S. F., Marko, K., Manessa, M. D. M., & Ristya, Y. (2020). Spatial Dynamics of Tsunami Prone Areas in Pariaman City, West Sumatera. Journal of Computational and Theoretical Nanoscience, 17(2), 1474–1491. https://doi.org/10.1166/jctn.2020.8828

Zhou, Y., Wu, T., & Wang, Y. (2022). Urban expansion simulation and development-oriented zoning of rapidly urbanising areas: A case study of Hangzhou. Science of The Total Environment, 807, 150813. https://doi.org/https://doi.org/10.1016/j.scitotenv.2021.150813

Published
2022-11-22
How to Cite
Latue, P. C., & Rakuasa, H. (2022). Dinamika Spasial Wilayah Rawan Tsunami di Kecamatan Nusaniwe, Kota Ambon, Provinsi Maluku. Jurnal Geosains Dan Remote Sensing, 3(2), 77-87. https://doi.org/10.23960/jgrs.2022.v3i2.98